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The Location of Diffuse Maxima in the X-ray Scattering Pattern from Distorted Crystals 
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The theory of the modulated diffuse X-ray scattering from crystals containing point centres of dilata- 
tion is examined. The usual calculations which predict that the diffuse scattering peaks at the position 
of the Bragg reflexion are excellent approximations when the distortion involves small atomic displace- 
ments. However, in the asymptotic case in which atomic displacements, associated with the defects are 
large, the maximum in the diffuse scattering occurs between the Bragg position characteristic of the 
average expanded lattice, and the Bragg position normally expected from a lattice distorted by image 
forces alone. 

Introduction 

Many authors (Huang, 1947; Borie, 1957, 1959, 1961) 
have considered the effect of the presence of isolated 
point defects on the X-ray scattering pattern from crys- 
tals. All conclude that the Bragg reflexions are un- 
broadened and are shifted to positions characteristic 
of an average distorted crystal (the distortion which 
would be measured with a dilatometer); they also con- 
clude that the intensity of the Bragg peaks is reduced, 
and that modulated diffuse scattering appears. How- 
ever, the location of the diffuse-scattering maxima is 
a subject of controversy. 

Cochran & Kartha (1956a) related the diffuse-scat- 
tering intensity to Fourier transforms of the individual 
defects. They subsequently showed (Cochran & Kartha, 
1956b) that their theory predicts a peak, in the diffuse 
scattering, located near a reciprocal point of the aver- 
age lattice after distortion by the defects. Krivoglaz 
(1959) criticized the theory for its assumption of a 
Gaussian distribution for the displacements of atoms 
from their positions in the average lattice. 

More recently, Keating (1968) claimed to have shown 
that the peaks in the diffuse scattering are located at 
the reciprocal points of the original lattice, before dis- 
tortion. The Bragg reflexions were again predicted to 
be at reciprocal points of the average distorted lattice. 
So Keating's results indicated a shift between the Bragg 
and the diffuse peaks. Hall (1969) pointed out that 
Keating's work rests on an inadmissible approxima- 
tion, but Hall provided no convincing alternative. The 
Keating-Hall approach is examined in some detail 
below. 

Another theory predicting a shift between Bragg 
and diffuse peaks is that of Krivoglaz (1969). His ap- 
proach is asymptotic in that it assumes distortions so 
great that the Bragg peaks are vanishingly small (al- 
though their positions are well defined), and the scat- 
tering is almost wholly diffuse. The present work, 
using much of Krivoglaz's formalism, leads to a quart- 

titatively different result, but it still indicates some 
shift between Bragg and diffuse peaks. 

Formulation of the problem 

We denote the location of the sth atom in the undis- 
torted crystal by Rs, and suppose that after distortion 
the position is Rs + 6Rs and the scattering factor is fs. 
Then, the scattered intensity from a crystal of N 
atoms is 

I =  ~ fs exp [ ik.  (Rs + 6R~)] 
s = l  

N 

= ~ fJ~*, exp [ik.  (R~-Rs,)] 
S,S" = I 

× exp [ik. (6R,-6Rs, ) ] ,  (1) 

where k is the scattering vector, of magnitude 
4n sin 0/2. 

Consider identical atoms and identical point defects, 
and suppose that a defect on the tth site displaces the 
sth atom by u~t from the undistorted position, leaving 
the scattering factor f unchanged. Writing ct= 1, if 
there is a defect on the tth site, and ct=O if not, we 
get for the total displacement of the sth atom: 

fiRs = ~ Gust, 
t 

summed over all possible defect sites in the crystal. 
Then, expression (1) for the scattered intensity be- 
comes 

I = f f *  ~ exp [ik. (Rs-R~,)] 17 exp [ik. (u~t-u~,t)cd. 
s , s "  t 

The problem is to average this intensity for a random 
distribution of defects at a concentration c = (ct). For 
such a distribution 

exp [ik.  (ust - u~,t)ct] = c exp [ik.  (ust - u~,t)] + 1 - c 
= 1 + Cfls~,t, 

where 
flss,t = exp [ik. (Ust-Us,t) ] -  1 . (2) 
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So the scattered intensity is 
I=ff* ~ exp [ik. (R~-Rs,)] H (1 + cfl~,,). 

$~S' t 

In this expression we may replace the scattering vector 
k by its difference k' from any vector of the reciprocal 
lattice. Then, 

I=ff* ~,, exp [ik'. (Rs-R~,)] H (1 +cfl~,r). (3) 
S,S e 

Keating-Hall approach 
Both Keating and Hall employ the expansion: 

C 2 C 3 

1-I(l+cfl,)=l+c ~p,+~-. ~ Zfl,£,+ 3-]-. 
l t ~ u 

x ~ ~ ~,8,fl, f l , ,+. . .  (4) 
, ¢ # v 

The product and all the sums must run over all the 
defect sites. Suppose that there are N' such sites. From 
(2) we can establish only that I/~,1-< 2. 

Keating has retained only the first two terms in (4). 
However, each successive term involves a sum that is 
'longer' by a factor N'  than the previous one, while 
the sum is multiplied by an additional factor c. So 
each term could be larger than the previous one by a 
factor N'c, which equals the total number of defects 
in the crystal. 

Hall has shown that retention of the first three terms 
of expansion (4) leads to results very similar to those 
of Cochran & Kartha, but the truncation of (4) to just 
three terms seems equally unjustified. 

Krivoglaz approach 
The product II (1 +eft,) can be handled in another 

t 

way; visually: 

H (1 +cfl,)=exp [ ~ In (1 +cfl,)] 

". 'exp(c~flt)=exp(-T), (5) 

where 

T= -c  ~ flt=c ~ (X-exp [ik. (us~-u~,,)]} . (6) 
t t 

The approximation is valid for c[fld~l.  This is the 
approach adopted by Krivoglaz. The same quantity T 
also appears in a treatment by Eisenriegler (un- 
published). 

In the case of point defects in finite crystals, dis- 
placements 0R~ comprise homogeneous 'image' dis- 
placements due to surface effects (Eshelby, 1954) as 
well as the displacements expected in an infinite crys- 
tal. Subsequently, we allow Rs to include the homo- 
geneous image displacements, so that for 0R~ we can 
use displacements calculated for an infinite crystal. 

We write R~- Rs, =R~,. Clearly, T depends on 
R~, = [Rss, I and we denote this by writing it as T(R~,). 
Using (5) in (3), and changing from a sum to an in- 
tegral as follows, we have 

N N 

I=ff* ~ ~ exp (ik ' .  Rss,) exp ( -  T) 
S = l  S '= l  

N 

~- Nff* ~, exp (ik ' .  Rs~,) exp ( -  T) 
S'----1 

.,, __N ]flZ I dR~, exp (ik' R~,) exp [ -  T(R,~,)] (7) __ ° , 
/) 

where v is the volume per atom. 
To proceed further we must specify the type of defect 

and the displacements n~t. In the case of isolated inter- 
stitials or vacancies in an infinite elastically isotropic 
medium, 

rt---L~ (8) 
us, = C r~ ' 

where rt~ is the vector from the defect site t to the 
normal atom s (before distortion). In general, C is 
positive for interstitials and negative for vacancies. The 
elastic solution given above is expected to fail very 
close to the defect where r,~ is less than some critical 
distance r0, but we assume the solution valid for 
rts > r0. The value of r0 is expected to be about one 
interatomic distance. With the expression (8) for u~, 
it is possible, at least in principle, to determine T from 
equation (6) and the scattered intensity I from (7). 

Eisenriegler evaluates T when small displacements 
allow the approximation" 

sin [ k .  ( u , , - u e , ) ]  ~- k .  ( u ~ t - u s , , ) .  

Under these circumstances no displacement is expected 
between Bragg and diffuse peaks. 

Krivoglaz's theory is appropriate for larger dis- 
placements. He predicts the location of the scattering 
peak by concluding that T(R~,) has no significant 
imaginary part, and that it increases with Rs~, to a large 
value. Under these circumstances the Bragg peak is 
severely attenuated, and I has a maximum at k ' =  0, 
i.e., at a position corresponding to the lattice as dis- 
torted by image terms only. The Bragg peak would 
appear at a position corresponding to an average lattice 
after the total distortion is included. 

Evaluation of  T 

The primary purpose of this paper is to give a new 
estimate of the imaginary part of T, for this is evidently 
crucial in determining the location of the scattering 
maxima. 

First, note that the real part of T is given from (6), by 

~e(T)=c ~ {1 - cos  [k. (us,-n~,,)]} • (9) 
t 

For large values of Rs~,, t can be close to only one of 
s, s', so only one of the displacements us, and us,, can 
be appreciable, and the asymptotic value is 

~e(T)~=2c ~ (1-cos  k .  us,) 
t 
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2c P 

\ (1 --cos k ust)drt~ t~ '  - -  

V d 

- v 4,~d~ r 2 1 - c o s C ~  dr 
ro  

__  I4 dr2 I ~° [Ck.f] z r "  2c 2 sin 2 \ ~ ] r 2 d r ,  
/3 r0  

where we have used expression (8) for u~t, and the in- 
tegral approximation (omitting rt~ < ro). In the above 
expressions r =  Irt~l and f is a unit vector in the direc- 
tion of rt~, while dO is an element of solid angle. 

C k .  O 
Substituting u for ~ gives 

~2e(r)oo 

. __2cI4, df2(Ck.,)3/2I: k''~/r°2 sin2 (u/2) 
- v uS/Z du. 

Ck . f  
Supposing r2 >> 1, then we have 

ICk.~/,o" sin 2 (u/2) d u ~  f :  sin2 (u/2) du=  ,1/2)~ 
~o u s/2 u 5/2 3 

and 

~e(T)oo" 2 1/2-~ c f ( C k .  f)3/2d£2 
3 v 4~ 

16re 1/~-~ c 
= (Ck) 3/z 

15 v " 

Krivoglaz suggests that even at small concentrations, 
16'1 is large enough to make Ne(T)o~ >>1. (For MgO, 
e.g., Hickman & Walker (1965) estimate volume 
changes of 3v and -0 .2v  per interstitial or vacancy, 
respectively. This means (Eshelby, 1954) that ICI is 
about 3v/4~ for an interstitial and 0.2v/4zc for a vacancy. 
Taking the average atomic volume as 9.3 A 3, and 
considering the 200 reflexion with k = 3.0 A -t ,  we get 

Ne(T)oo,,,15c or 0.27c, 

for interstitials and vacancies, respectively. Thus, the 
Krivoglaz criterion is unlikely to be attained, but the 
theory is still useful as an asymptotic case. Following 
Krivoglaz's method, we assume Ne(T)>> 1 for large 
values of R~,, whereas for R~, = 0 ( s=s ' )  it is evident 
from (9) that Ne(T)=0. In these circumstances, the 
main contribution to the integral (7) is from the region 
of small Rs~,. 

The imaginary part of T is given by 

J m T = - c  ~ sin [k. (u~t-u~,t)] 
t 

_ ~ _ c I drt sin [k . (Ust-U~,t)] = X  , (10) 
V 

in the integral approximation. We now evaluate this 
integral for small values of R~,. To first order in Rs,,, 

3CkR,~, 
k .  ( u s t - u ~ , , )  = r3 9 ' ,  ( 11 )  

where ¢, = ½ cos 7 -  cos 0 cos Z, r is a vector drawn to 
the site t from a point halfway between s and s', and 
0, Z, and ~, are the angles between r and R~s,, k and r, 
k and Rs~, respectively. 

The approximation (11) holds for r>Ro, where 
Ro >~ R~s,, Ro >> ro. 

Omitting the sphere of radius Ro, we find from (10) 
and (1 l) that 

X =  ---~-¢ g:2dr  4,~ sin r3 9, d£2. (12) 

At first sight it seems that the r integral may be diver- 
gent, because when r 3 ~> 3CkRs~, ~,, the leading term in 
the integrand, is 

S 3CkR~s, gd~  oc - - .  
4n i" r 

However, ~ 9,di2=0, the leading non-zero term, is 
proportional to r-7, and the convergence of the integral 
is established. 

The integral (12) can be transformed, as shown in 
the Appendix, with the result: 

4 7 z c  
X= - ~ Ck Rs~, 

3v 

x u2 sin [u cos ?, (1 - 3  sin 2 ~)] 

z3u " /~ ~ (13) × s i n ,  sm 

For the special case ?,=re/2 the integral X vanishes; 
it is otherwise intractable. However, we can attempt 
an approximate evaluation. If we follow Krivoglaz's 
method in assuming C is so large that 

then 

CkRss, >>1, 

4 ~ C  
Jm(T)~-X~- - 3---if- CkR~,Y,  (14) 

where 

Y= ,)o u 2 sin [u cos ? (1 - 3 sin 2 ~)] 

x J o ( -  ~ sin ), sin 2~) cos ~ d~.  
z ~  

(15) 

This result is interesting in that Jm(T)  depends linearly 
on R~,, in contrast with the Krivoglaz (1969) result. 
The radius R0 of the omitted sphere does not appear, 
provided R 3 ~ CkRss,. 

The value of Y has been determined by numerical 
integration for various angles ?. The results are listed 
in Table 1. 
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Table 1. Calculated vahtes of Y 

cos 7 Y Y/cos 7 = Z 
0 0 

0"2 0"057 0"286 
0.4 0.099 0-247 
0-6 0.128 0"214 
0"8 0.148 0.185 
1"0 0"160 0.160 

With the listed values, little direct progress can be 
made in evaluating the scattered intensity. However, 
to the extent that we can consider Y/cos 7 = Z approx- 
imately constant we have 

4nc CkR~s, Z cos 7 ,fm(T) ~_ - 3v 

4zcc 
- 3--)- Ck .  Rs~, Z .  (16) 

Then, the substitution of (16) into integral (7) indicates 
a scattering peak located at 

4zcc 
k' ~ C k Z = 0 .  

Z =  0 would locate the maximum at k ' =  0, while Z =  1 
would locate it at the position expected for the Bragg 
peak. From Table 1 it would seem reasonable to take 
Z-~0.2. So the diffuse maximum is shifted from the 
position as distorted by image terms only, towards the 
Bragg positions, by about 20 % of the separation of 
these two positions. This result has recently been con- 
firmed in a private communication from Krivoglaz. 

Conclusion 

Calculations of the X-ray diffraction pattern from crys- 
tals containing point centres of dilatation are now 
available for two asymptotic cases. 

When the defects do not cause severe local distor- 
tions, use of the acceptable approximation 

sin [k.  (Ust-U~,~)]=k. (u,~-u,,t) 

allows no displacement between Bragg and diffuse 
peaks. 

For defects giving rise to large atomic displace- 
ments, the Krivoglaz formalism predicts that the maxi- 
mum in the diffuse scattering occurs between the Bragg 
peaks characteristic of the average expanded lattice 
and those of a lattice distorted by image forces alone. 
In this approximation the Bragg peaks have been com- 
pletely attenuated. 

Observations of neutron irradiated beryllium oxide 
(Hickman, Sabine & Coyle, 1962; Walker, Mayer & 
Hickman, 1964; Austerman & Miller, 1965) show the 
intermediate case of a Bragg peak and a diffuse maxi- 
mum well separated from the Bragg position. Calcula- 
tions for this case are in progress. 

Thanks are due to T. M. Sabine for suggesting the 
problem and for guidance, to B. Clancy for some help- 

ful comments, and to Mrs S. G. Johnson for the nu- 
merical integrations. 

APPENDIX 

To evaluate integral (12) we evaluate the I2 integral 
through spherical polar coordinates, k defining the 
pole. If the azimuthal angle ~ is measured from the 
plane containing k and Rs~, it can be shown that 

cos Z = sin 7 sin 0 cos ~0 + cos 0 cos 7 

and, hence, that 

~,=½ cos 7 ( 1 - 3  cos 2 0 ) -½ sin 7 sin 20 cos ~0. 

Then, 

I4, sin(3CkRss' ra ~,) dr2 

3CkRs~, 
= sin (A p')df2, where A - ra , 

4n 

= sin cos 7 (1 - 3  cos 2 0) 
0 0 

A sin 7 sin 20 cos cp] sin 0 d0dcp 
2 

[j_ ] = sin cos 7 ( 1 - 3  cos 2 0) 
0 t 0  

XCOS [@sinTsin20cosc,0]sin0d0dcp 

S ~  ~ [ ÷  ] -- cos cos 7 (1 --3 cos 2 0) 
0 tO 

x sin [ 2  sin 7 sin 20 cos ~0] sin 0 d0d~o. 

We can now perform the ~o integrations. This means, 
in effect, evaluating the integrals 

f A 2, cos (B cos ~0)d~0 where B=-~- sin 7 sin 20 
,o sin ' 

Through changing the variable to cos (o we obtain 

12~ l ~ cosBx 
cos (B cos (p)dq) = 4 i/q--Z- ~ dx = 2nJo(B), 

tO tO 

and 

So 

1 2,~ sin (B cos ~0)d~0 = 0.  
0 

ksin (3"R's ,3 

l ] =2n sin cos 7 ( I - 3  cos2 0) Jo(B)sinOdO 
0 



C. J. H O W A R D  617 

= 4 n  sin -~- cos 7 ( 1 - 3  sin 2 ~) 

× Jo - ~ - s i n T s i n 2 ~  c o s ~ d ~ .  

Substituting in (12) gives 

X =  - 4 n  --e I r2dr sin cos ~, (1 - 3 sin 2 
V R0 

XJo - T  sin)~sin2~ c o s ~ d ~ .  

CkRss, 
Finally, a change in variable from r to u -  r3 = 

A 
3 gives the expression in (13). 

References 

AUSTERMAN, S. B. & MILLER, K. T. (1965). Phys. status 
solidi, 11, 241. 

BORIE, B. (1957). Acta Cryst. 10, 89. 
BORtE, B. (1959). Acta Cryst. 12, 280. 
BORIE, B. (1961). Acta Cryst. 14, 472. 
COCnRAN, W. & KARa'rIA, G. (1956a). Acta Cryst. 9, 

941. 
COCaRAN, W. & KARa-nA, G. (1956b). Acta Cryst. 9, 

944. 
ESnELBV, J. D. (1954). J. Appl. Phys. 25, 255. 
HALL, C. R. (1969). J. Phys. Chem. Solids, 30, 919. 
HICKMAN, B. S., SABINE, T. M. & COYLE, R. A. (1962). 

J. Nucl. Mater. 6, 190. 
HICKMAN, B. S. & WALKER, D. G. (1965). Phil Mag. 11, 

1101. 
HUANG, K. (1947). Proc. Roy. Soc. A190, 102. 
KEATING, D. T. (1968). J. Phys. Chem. Solids, 29, 771. 
KRIVOaLAZ, M. A. (1959). Fiz. Metal Metalloved. 7, 

650. 
KRIVOGLAZ, M. A. (1969). Theory of X-ray and Thermal- 

Neutron Scattering by Real Crystals. New York: Plenum 
Press. 

WALKER, D. G., MAYER, R. M. & HICKMAN, B. S. (1964). 
J. Nucl. Mater. 14, 147. 

Acta Cryst. (1971). A27, 617 
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When the ~ - U 0 3 ,  La203 and NaCl structure types are idealized by a topological distortion involving 
only an extension or contraction of the hexagonal c axis (cubic [111]) it is clear that they are related to 
each other, and to the CaF2 type, by crystallographic shear. A number of lanthanide and actinide oxide 
structures are of these types, or derived superstructure types containing ordered anion 'vacancies' or 
'interstitial' anions. The structural relations suggest possible reduction mechanisms. 

Introduction 

A multitude of actinide and lanthanide oxides may be 
regarded as deriving from a very few basic structural 
types. The derived structures are superstructures of 
some of these parent types, containing ordered ar- 
rangements of 'point defects' - anion vacancies or 
interstitial anions. Although the structural details of 
many of the phases are still unknown the broad picture 
is quite firmly and clearly established. The basic 
structure types are e-UO3, CaF2 (fluorite type), 
La2Oa (A-type rare earth sesquioxide) and NaC1. The 
derived structures are related to the first two and are 
summarized in Table 1. The purpose of this paper is 
to examine the structural relations between the basic 
types, and thus between the derived types also. 

Previous papers (Anderson & Hyde, 1965, 1967) 
have discussed structural relations within various 
families of 'Magn61i phases', whose members are 

related by so-called crystallographic shear (CS) 
(Wadsley, 1955). The families concerned are 'homol- 
ogous series' (Magn61i, 1953) of various outer transi- 
tion metal oxides in which the metal ion is octahedrally 
coordinated by oxygen; e.g. tungsten, molybdenum 
and mixed tungs ten+molybdenum oxides of general 
formulae MnO3,-1 and M,,O3n_ 2 derived from the 
ReO3 structure type, and titanium and vanadium 
oxides M,Ozn_I derived from the rutile type. 

A plausible dislocation mechanism was described 
for producing the derived phases from the parent. In 
reduction it involves the aggregation of anion vacan- 
cies into a disc across which the crystal then collapses 
and shears (the CS operation) so that the vacant sites 
are eliminated and the previous cation coordination 
[MO6] is restored. In oxidation a new anion plane is 
nucleated by aggregation of interstitial anions. Either 
process produces a dislocation ring which then expands 
by the accretion of point defects until a complete 


